
NLWeb:
A Technical Assessment
for AI-Enhanced
Website Functionality
Consuming Schema Markup for AI Functions:
Implementation Findings and Lessons Learned

{
 "@context": "https://schema.org",
 "@type": "Person",
 "@id": "https://www.schemaapp.com/author/vberkel/#Person",
 "url": "https://www.schemaapp.com/author/vberkel/",
 "name": "Mark van Berkel",
 "worksFor": {
 "@type": "Organization",
 "name": "Schema App",
 "@id": "https://www.schemaapp.com/#Organization",
 },
 "jobTitle": "Chief Technology Officer",
 "knowsAbout": {
 "@type": "Thing",
 "@id": "https://www.schemaapp.com/author/vberkel/#Thing",
 "name": "Semantic Technology",
 },
}
</script>

Executive Summary

Executive Summary

One of the current challenges in using generative AI, as always in the data
world, is making one’s data consumable by AI tools. Whether it's an LLM-
powered chatbot for a website or a new agent to automate IT tasks, these
things all have one thing in common: they require quality, clean data — the
more structured the better.

NLWeb, short for Natural Language Web, presents a compelling solution for
those interested in fast-tracking the behind-the-scenes data work and rolling
out AI functions for their websites.

This paper documents our evaluation of Microsoft's NLWeb toolkit as both a
semantic search replacement for WordPress and a broader AI enablement
platform.

Through A/B testing, implementation analysis, and hands-on
prototyping, we aim to provide technical insights for organizations
considering NLWeb adoption.

Introduction to NLWeb

Introduction to NLWeb

Data Ingestion
Web crawler that navigates your site and retrieves schema-
marked-up elements
Data loader that loads website data into a vector database of your
choice with all the proper embeddings for the LLM model you wish
to use
Connectors for popular LLM endpoints

Data Storage
Built-in MCP (Model Context Protocol) servers for standardized
LLM interactions
Conversation storage

Ease of Use
Natural language handling through the prompt control flow
Boilerplate front end accelerating prototyping

NLWeb is a toolkit from Microsoft that makes AI integration remarkably
accessible. At a higher level view of its functionality, its standout feature is an
‘ETL’ pipeline built to load Schema.org structured data from one’s website into
a vector database, following the new Model Context Protocol (MCP) standard.
The NLWeb toolkit, available at https://github.com/nlweb-ai/NLWeb, comes
with several components:

As people who have built pipelines for retrieval-augmented generation (RAG)
will tell you, there are many hidden complexities around data extraction,
chunking strategies, embedding consistency, and vector store optimization
that can consume much development time.

http://schema.org/
https://github.com/nlweb-ai/NLWeb

What using NLWeb means for website teams is that now your site is
navigable, findable, and usable by AI with just a couple of hours of setup,
avoiding data-loading complexities. The toolkit also comes with a collection of
system prompts meant to make querying your website data more reliable,
allowing those not ready to step into the dark arts of prompt engineering to
make their first steps into LLM utilization with NLWeb's preconfigured
prompting.

There are three default query templates:
List
Summarize
Generate

A company wanting to replace its basic website search functionality with
something AI-powered and semantic could use the NLWeb list functionality to
take a search keyword as input and provide a list of relevant results.

Introduction to NLWeb

Pictured below is a top-level diagram of how the NLWebApp service works
once deployed. The app takes a query [1] and contextualizes that query [2]
using multiple parallel calls to the LLM and vector store, utilizing initially
requested query types (list, summarize, generate), conversation history, and
more.

The service may fast-track the query past contextualization [2b] if it is simple
and does not need contextualization. The LLM will then select a tool to use [3]
based on query contextualization, for example, search, item details, or
ensemble queries. The service then takes the results and, again depending on
the type of tool selected, compares results [4] and prepares them for display
back to the user with optional post-processing [4a].

Source https://github.com/nlweb-ai/NLWeb/blob/main/docs/life-of-a-chat-query.md

Introduction to NLWeb

The user has the following query: {request.query}

The search tool finds items that match specific criteria, such as:
Recipes, movies, books, or products that meet certain requirements
Discovering items based on attributes like genre, cuisine type, price range,
or features
Broad exploration when users want to see what’s available

The search tool is not the best choice if the user is asking for details about a
specific named item (like ingredients, instructions, cast, or price).

Assign a score from 0 to 100 for whether the search tool is appropriate, and
provide the search query that should be passed to the tool.

Introduction to NLWeb

The service includes a debugging mode that lets you inspect intermediary LLM
calls. Below is an example output from the tool selection prompt, along with
the prompt template that NLWeb passes to the LLM to generate this result.

The orchestration process ensures prompts are handled at a finer granularity,
allowing the system to adjust tool selection based on context and stored
history without overloading the LLM’s context window.

Tool Selection Prompt Template

Implementation Architecture and Setup

Implementation Architecture and Setup

Infrastructure Configuration

Our implementation was deployed on AWS EC2, providing a controlled
environment for testing and evaluation. The setup process, while
straightforward, revealed several important considerations:

Documentation Challenges: The NLWeb documentation proved somewhat
unorganized with several undocumented features, such as the user agent
setting for the crawler. This required additional exploration and
experimentation during setup. For instance, we needed to modify the
provided NLWeb code to use our crawler’s identity.

Vector Database Selection: We selected Qdrant as our vector database
server based on its recommendation for quick setup and the ability to bundle
it as a Docker container. This approach offers significant advantages:

Simplified deployment alongside NLWeb on the same server
Potential for data isolation in future customer deployments
Embedding-agnostic flexibility for different model configurations

However, our implementation revealed a critical limitation: the
containerized version of Qdrant supports only one connection at a time,
preventing simultaneous reading and writing operations.

This means NLWeb must be stopped to add new data to the datastore, which
slowed initial experimentation but shouldn't cause significant friction for
production deployments with established content loading schedules.

LLM and Embedding Configuration

Our testing revealed important insights about model selection and
configuration:

Initial Model Experimentation: We initially tested various LLM options
including Gemini 2.0 Flash and GPT 4.1. Gemini 2.0 Flash performed poorly,
while Gemini 2.5 Pro wouldn't function at all within the NLWeb framework.

Optimal Configuration: We achieved best results using Azure OpenAI for the
LLM endpoint, likely because this received the most internal testing by the
Microsoft NLWeb team. For embeddings, we switched to OpenAI's embedding
models, creating a stable and reliable configuration.

Lesson Learned:
For endpoint and embedding selection, we found it best to keep these at
Microsoft Azure defaults — other LLM endpoints behaved more inconsistently.

Data Ingestion Process

The data ingestion process proved remarkably efficient. Using existing
Schema App markup data, we exported content in CSV format with URL and
JSON-LD as the two columns. The entire setup took approximately one hour
to have a functioning system providing AI-powered answers — a significant
improvement over developing similar functionality from scratch.

Implementation Architecture and Setup

Website Search Prototype and Testing Methodology

Website Search Prototype and Testing
Methodology

Current State Analysis
Our website, like many, uses our content management system's (WordPress)
search functionality. This provides adequate keyword-based search but lacks
semantic understanding — it cannot interpret the meaning of search requests
or the content it retrieves.

Since we're in the business of making semantic data useful, replacing
default search functionality presented an ideal NLWeb prototyping
opportunity.

Semantic Search Implementation
NLWeb transforms search from keyword matching to semantic understanding
through the orchestration of LLM calls with generation augmented by the
retrieval of structured data.

When a user enters a search term, NLWeb's behind-the-scenes process:
Makes fine-grained prompted calls to contextualize the query
Categorizes entities of interest within the search
Uses additional LLM calls to rank relevance between categorized queries
and extracted Schema Markup in the vector database

This enables search to interpret queries as being about certain types of
things, then find pages related to those conceptual categories rather than just
keyword matches.

Criteria WordPress Search NLWeb Search

Search Result
Relevance

Returns results based on
keyword matching,
consistently surfacing exact-
match content, especially for
titles and headings

Leverages generative and
semantic search, capable of
providing summaries and
context-rich answers.
Occasionally surfaces highly
relevant but less literal
matches, which may be less
predictable for users
expecting keyword-based
results

Performance
Characteristics

Fast and predictable, with
results optimized for existing
content structure

Slightly slower due to model
inference, but acceptable for
most queries. Performance
expected to improve as
underlying models are
optimized

Text Search
Accuracy

Excels at literal string
matching

Excels at finding semantically
similar content but may miss
exact-match scenarios unless
explicitly tuned

Website Search Prototype and Testing Methodology

A/B Testing Results

We conducted comprehensive A/B testing using the top 10 search queries
from Google Analytics, comparing NLWeb results against WordPress search as
the control.

Website Search Prototype and Testing Methodology

Real-World Example

In the default WordPress search, entering 'entity' returns only pages with that
word in the title or subtitle HTML tags. Since we launched a product named
'Entity Hub', WordPress search results were dominated by those pages. Using
NLWeb, results provided a much more balanced representation of blog posts,
how-tos, demos, and user stories, because NLWeb uses LLM calls and Schema
Markup to understand the meaning of website content.

Testing Challenges and Observations

Search Term Limitations: We encountered an issue where NLWeb
produced no results for the search term "saving in schema." This suggests
certain domain-specific terminology may require additional prompt tuning
or training data consideration.

Localization Issues: During testing, unusual Japanese text appeared in
debug information, indicating potential localization configuration needs.

Result Quality: While positional matches between WordPress and NLWeb
were rare, NLWeb seemed to prioritize relevance more effectively, leading
to improved user experience. Manual review categorized non-matching
results as either improvements or equally relevant to WordPress results.

https://www.schemaapp.com/solutions/entity-hub/

Configuration Best Practices and Optimization

Configuration Best Practices and Optimization

Prompt Engineering for Domain Specificity

For semantic search effectiveness, we recommend reviewing and
customizing NLWeb's default prompts, particularly the
DetectItemTypePrompt (https://github.com/nlweb-
ai/NLWeb/blob/main/config/prompts.xml). By default, the system
recognizes limited categories. Tailoring these categories to reflect your
website's content provides significant improvement.

Recommendation:
This presents an especially interesting opportunity to incorporate
structured data (RDF, OWL) to enhance search result quality and
semantic understanding.

Challenge: NLWeb requires additional configuration to distinguish
between content types (blogs vs. landing pages vs. documentation).

Solution Directions:
Develop structured prompts or metadata signals to help NLWeb
distinguish content types
Consider hybrid approaches combining keyword and semantic search
for more predictable results
Implement user feedback mechanisms for iterative search quality
improvement

Content Type Differentiation

https://github.com/nlweb-ai/NLWeb/blob/main/config/prompts.xml
https://github.com/nlweb-ai/NLWeb/blob/main/config/prompts.xml

Production Readiness Assessment

Production Readiness Assessment

Minimum Criteria for WordPress Replacement

To serve as a production-ready WordPress search replacement, NLWeb must:
Surface all relevant content types with high accuracy
Allow filtering or prioritization by content type
Provide predictable results for common queries
Have few regressions from WordPress search performance for exact-
match scenarios

Predictability: NLWeb's generative approach, while powerful for
summarization and contextual answers, needs refinement to consistently
meet user expectations for direct content retrieval.

Performance Tuning: Optimize model serving for lower latency to match
WordPress response times.

Hybrid Integration: Consider embedding NLWeb results as "smart
suggestions" within existing WordPress search UI rather than complete
replacement.

Current Gaps and Mitigation Strategies

Phase 1

Phase 2

Phase 3

Deploy NLWeb as supplementary "semantic
suggestions" alongside existing search

A/B test user preference and engagement
metrics

Full replacement after addressing identified
gaps

Phased Adoption Approach

Strategic Implementation Recommendations

Strategic Implementation Recommendations

Containerization: Leverage Docker containers for simplified deployment and
customer data isolation

Monitoring: Implement comprehensive logging and performance monitoring
for model inference and search quality

Feedback Loops: Build user feedback mechanisms to continuously improve
search relevance

Technical Architecture Considerations

Conclusions and Future Directions

Conclusions and Future Directions

NLWeb presents a compelling solution for organizations seeking to leverage
existing Schema Markup for AI functionality.

The remarkably quick setup time — approximately one hour from start to
functioning AI-powered search — represents a significant advantage over
custom development.

Key Strengths Areas for Enhancement

Rapid deployment and
integration
Effective utilization of existing
Schema Markup
Semantic search capabilities
that understand content
meaning
Pre-built components that
solve complex data loading
challenges

Prompt tuning for domain-
specific terminology
Content type differentiation
capabilities
Performance optimization for
production workloads
Predictability improvements
for exact-match scenarios

Strategic Value: For organizations with schema.org markup, NLWeb
offers a fast track to AI-enhanced website functionality. The toolkit's ability
to make websites "navigable, findable and usable by AI" with minimal
setup makes it particularly attractive for rapid prototyping and proof-of-
concept development.

Next Steps

Technical Documentation: Develop comprehensive implementation
guides with reproducible test cases

NLWeb represents a significant step forward in making AI functionality
accessible to organizations with structured data, providing a practical path
from Schema Markup to intelligent, context-aware website interactions.

Integration Strategy: Explore hybrid approaches that leverage both
traditional and semantic search strengths

Performance Benchmarking: Conduct detailed performance analysis
for production scalability planning

Hello@SchemaApp.com

www.SchemaApp.com

This assessment is based on hands-on implementation and testing conducted by
the Schema App Data Team. For detailed technical implementation guides and
reproducible test cases, additional documentation assets are available upon
request.

Interested in having Schema App set up NLWeb on your website?
Contact our sales team today.

If you are a current Schema App customer, reach out to your Customer
Success Manager for further inquiry.

mailto:hello@schemaapp.com
https://www.schemaapp.com/?utm_source=eBook&utm_medium=NLwebWP
https://www.schemaapp.com/get-started/

